Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 4 ] 
Автор Сообщение
 Заголовок сообщения: Вычислить, используя формулу Стокса
СообщениеДобавлено: 23 окт 2017, 13:56 
Не в сети
Одарённый
Зарегистрирован:
12 сен 2017, 16:05
Сообщений: 177
Cпасибо сказано: 1
Спасибо получено:
6 раз в 6 сообщениях
Очков репутации: 4

Добавить очки репутацииУменьшить очки репутации
[math]\int\limits_{ \Gamma } zdx+2xdy-ydz[/math], где

[math]\Gamma[/math]: [math]\left\{\!\begin{aligned}
& x^{2}+y^{2}=2x \\
& z=xy \\
& z \geqslant 0
\end{aligned}\right.[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Вычислить, используя формулу Стокса
СообщениеДобавлено: 23 окт 2017, 14:13 
Не в сети
Одарённый
Зарегистрирован:
12 сен 2017, 16:05
Сообщений: 177
Cпасибо сказано: 1
Спасибо получено:
6 раз в 6 сообщениях
Очков репутации: 4

Добавить очки репутацииУменьшить очки репутации
[math]\int\limits_{ \Gamma } zdx+2xdy-ydz[/math], где

[math]\Gamma[/math]: [math]\left\{\!\begin{aligned}
& x^{2}+y^{2}=2x \\
& z=xy \\
& z \geqslant 0
\end{aligned}\right.[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Вычислить, используя формулу Стокса
СообщениеДобавлено: 23 окт 2017, 15:48 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
28 апр 2016, 13:40
Сообщений: 3272
Cпасибо сказано: 4
Спасибо получено:
598 раз в 568 сообщениях
Очков репутации: 94

Добавить очки репутацииУменьшить очки репутации
Не получается замкнутого контура при z>=0. Не могли бы вы дать картинку самого задания?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Вычислить, используя формулу Стокса
СообщениеДобавлено: 24 окт 2017, 14:50 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
28 апр 2016, 13:40
Сообщений: 3272
Cпасибо сказано: 4
Спасибо получено:
598 раз в 568 сообщениях
Очков репутации: 94

Добавить очки репутацииУменьшить очки репутации
Если принять z>=0, то получается поверхность, которая проецируется на плоскость x0y в полукруг: [math](x-1)^{2}+y^{2}=1; y \geqslant 0[/math]
Вектор, циркуляцию которого нужно найти [math]\vec{F}=(z,2x,-y)[/math]. Находим
[math]\operatorname{rot}\vec{F} =(-1,1,2)[/math] Нормаль к поверхности z=xy будет:
[math]\vec{n}=\left(- \frac{ z_{x} }{ \sqrt{z_{x}^{2}+z_{y}^{2}+1 } },- \frac{ z_{y} }{ \sqrt{z_{x}^{2}+z_{y}^{2}+1 } }, \frac{1 }{ \sqrt{z_{x}^{2}+z_{y}^{2}+1 } } \right)[/math]
Если dxdy - проекция эл. площадки поверхности на плоскость x0y, то сама [math]dS= \sqrt{z_{x}^{2}+z_{y}^{2}+1 }dxdy[/math]
[math]\vec{dS}=ds\vec{n}=\left( -ydxdx,-xdxdy,dxdy \right)[/math]
[math]\operatorname{rot}\vec{F} \vec{dS}=(y-x+2)dxdy[/math]
Переходим к интегрированию по формуле Стокса
[math]\mathop{\int\mkern-20.8mu\circlearrowleft}\limits_{L} \vec{F}\vec{dl}=\iint\limits_{ S }(y-x+2)dxdy=\int\limits_{0}^{2}dx\int\limits_{0}^{\sqrt{1-(x-1)^{2} } }(y-x+2)dy[/math]
В этом двойном интеграле легко разделяются переменные и он сводится к простым берущимся интегралам.

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему      Страница 1 из 1 [ Сообщений: 4 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Найти циркуляцию векторного поля, используя формулу Стокса:

в форуме Векторный анализ и Теория поля

Kaori

1

356

04 май 2020, 21:15

Вычислить выражение, используя формулу Муавра

в форуме Комплексный анализ и Операционное исчисление

Rostislav

5

2725

03 мар 2013, 19:31

Вычислить, используя интегральную формулу Коши

в форуме Комплексный анализ и Операционное исчисление

aavaljev

2

224

04 июн 2020, 09:36

Вычислить, используя интегральную формулу Коши

в форуме Комплексный анализ и Операционное исчисление

sansii35

2

132

12 янв 2021, 16:31

Вычислить интеграл, используя формулу Коши

в форуме Комплексный анализ и Операционное исчисление

Valerikk

1

212

24 апр 2020, 10:54

Вычислить предел, используя формулу Тейлора

в форуме Ряды

MikhailZ

2

312

17 май 2019, 11:02

Вычислить интеграл используя интегральную формулу Коши

в форуме Комплексный анализ и Операционное исчисление

NohchI95

19

1561

06 янв 2014, 14:15

Используя формулу Грина, вычислить циркуляцию вектор. поля

в форуме Векторный анализ и Теория поля

LevMarc

1

129

28 май 2022, 22:17

Криволинейный интеграл через формулу Стокса

в форуме Интегральное исчисление

searcher

2

471

29 ноя 2017, 23:42

Используя формулу Муавра

в форуме Комплексный анализ и Операционное исчисление

CAHR_babanbiba

3

264

28 фев 2021, 19:22


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 3


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2022 MathHelpPlanet.com. All rights reserved